Overview

• Motivation
• 5G-TRANSFORMER system
• Vertical service descriptions
• Translation to network slices
• Arbitration
• Summary
Motivation

• 5G networks provide different service types
 • eMBB enhanced mobile broadBand
 • mIoT massive IoT
 • URLLC ultra-reliable low-latency communication

• Different service types require different deployments
 • Create several logical networks on common physical infrastructure
 • ➔ network slices

• (eMBB), mIoT, and URLLC enable the creation of new services
 • Provided by vertical industries (automotive, eHealth, smart city, …)
 • Hundreds, thousands, … of service instances
 • Communication service extended with applications provided by verticals
 • ➔ vertical service
Motivation (contd.)

• Verticals are experts in their application domain
 • Assumption: less knowledgeable in creating and orchestrating network slice for their specific service
 • Intersection collision avoidance (automotive), onsite live experience (entertainment), emergency response in case of heart attack (eHealth), control of production plant (eIndustry), ...

• Create a platform that allows verticals to focus on the service to be provided
 • Creation and orchestration of network slices handled by the platform
5G-TRANSFORMER system architecture

Vertical Slicer
Service Orchestrator
Mobile Transport and Computing Platform
5G-TRANSFORMER Components

Vertical Slicer
- Common entry for all verticals
- Definition of vertical services and SLAs
- Mapping to network slices,
- Arbitration

Service Orchestrator
- End-to-end orchestration of network slices
- Federation

Mobile Transport and Computing Platform
- Orchestration of resources
- Manages network, compute, storage infrastructure
- Infrastructures: cloud/MEC datacenter, 5G AN/CN, ...
- Provides different abstractions
Vertical Service Descriptions

• Vertical Service Blueprint
 • Incomplete description of a vertical service
 • Required latency, throughput, ...
 • Coverage area
 • VM image of vertical application
 • Created by 5G-TRANSFORMER service provider

• Vertical Service Descriptor
 • Complete description of vertical service
 • Multiple instances of same vertical service possible

• Network Service Descriptor (ETSI NFV)
 • n:m relation to vertical service instances
 • Used as network slice template
 • Passed to 5GT-SO
Vertical Service Blueprint

#### Field	Description
Name	LTE Sensor Monitoring
Description	... reference architecture in 3GPP 23.682, indirect mode. ... application server and AAA server are provided by the vertical.
Version	1.0
Identity	Xyz4711_bp
Parameters	`<coverageArea, Coordinates, “LTE coverage area”, Service Constraints/Geographical area>`
`<sapLocation, Coordinate, “Location of SAP”, Service Constraints/sapAS Location>`	
`<deviceAmount, Int, “amount of sensors”, SLA/sapUu>`	
`<msgRate, Int, “sensor msg rate”, SLA/sapUu>`	
`<msgSize, ...>, <aggregatedBw, ...>`	
`<asVM, URL, “location of AS VM”, functional component/as/image”>`	
`<aaaVM, ...>`	

#### Field	Description
Atomic functional components involved | vEPC_23682_indirect, 4GRAN, MTC-AAA, AS
Service sequence | connectivity service
Connectivity service | sapUu - cpAs, sapAAA - cpAAA, cpAsEpc - cpEpcAs, cpAAAEPc - cpEpcAAA: L3VPN
External interconnection | sapUu: 4G
Internal interconnection | n/a (no other services, except those listed already are needed)
Vertical Service Blueprint

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service constraints</td>
<td></td>
</tr>
</tbody>
</table>
 Number of Application servers: n/a (provided by Translator)
 Images of virtual applications: vmAS: <<urlAS>>
 Virtual application connection endpoints: cpAsEpc, cpAs
 Lifecycle operations: To be defined
 Scaling rules: Scale out: 80% load, Scale in: 60% load |
| Mgmt and control for tenant |
 Provider managed |
| SLA |
 sapUu: <<N>> devices with <<rate>>msg/min of <<size>>B.
 cpAs: <<bwAs>>bps
 cpAAA: 10Mbps
 latency sapUu - cpAsEpc: 50ms
 latency sapUu - cpAAA: 50ms |

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>n/a (see the field SLA instead)</td>
</tr>
<tr>
<td>Geographical area</td>
<td>Geographical area: <<Coordinates describing the plant boundary>></td>
</tr>
<tr>
<td>sapAs location</td>
<td>sapAs location: <<MetroArea of this sap>></td>
</tr>
<tr>
<td>Security</td>
<td>Security: low</td>
</tr>
<tr>
<td>Priority</td>
<td>Priority: medium</td>
</tr>
</tbody>
</table>

15 April 2018
Vertical Service Descriptor

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>LorryMovement_ConstructionSite_Ulm</td>
</tr>
<tr>
<td>Description</td>
<td>The position of lorries on a big construction site in Ulm are monitored</td>
</tr>
<tr>
<td>Version</td>
<td>1.1</td>
</tr>
<tr>
<td>Blueprint</td>
<td>Xyz4711_bp</td>
</tr>
<tr>
<td>Identity</td>
<td>Abc0815_vsd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST</td>
<td>n/a ...</td>
</tr>
<tr>
<td>Service constraints</td>
<td>Geographical area: city area of Ulm and surroundings Region_Ulm</td>
</tr>
<tr>
<td></td>
<td>sapAs location: Region_Ulm</td>
</tr>
<tr>
<td></td>
<td>Security: low</td>
</tr>
<tr>
<td></td>
<td>Priority: medium</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>Mgmt and control for tenant</td>
<td>Provider managed</td>
</tr>
<tr>
<td>SLA</td>
<td>sapUu: 500 devices with 1msg/min of 200B.</td>
</tr>
<tr>
<td></td>
<td>cpAs: 1Gbps</td>
</tr>
<tr>
<td></td>
<td>cpAAA: 10Mbps</td>
</tr>
<tr>
<td></td>
<td>latency sapUu - cpAsEpc: 50ms</td>
</tr>
<tr>
<td></td>
<td>latency sapUu - cpAAA&Epc: 50ms</td>
</tr>
</tbody>
</table>
Translator/Arbitrator

• Map vertical service to network slice
• NFV NSD used as network slice template
 • Structural information in VSD is similar to NSDs
 • Cardinalities, availability, ...
• Additional decisions to take (Arbitrator)
 • Map to existing network slice or create new one?
 • Isolation requirement
 • Sensor monitoring example: security: low
 • ➔ several instances in same NSI, even of different verticals
 • Map (composed) vertical service to one or to several network slices?
 • Same or different lifecycle of parent/child VSDs?
 • Isolation requirements
 • Describe connectivity among network slice instances
Network Service Descriptor

• Even for simple vertical service, network slice may contain many VNFs
• No placement decisions by 5GT-VS
 • Enhance SAP definition with location information
 • Enhance pointToPointConnectionConstraint with endpoint information to express latency constraint along path
• Placement decision by 5GT-SO
Arbitration

• Resources are limited
 • Bandwidth, storage, processing capacity, ...
 • Some vertical services might not get all the resources they need
 • Provide resources to high-priority vertical services, accept KPI degradation for low-priority ones

• Vertical and provider agree on resource budget
 • Assign priorities to vertical service instances
 • Assign resources to high-priority services of the vertical
 • Arbitrator encodes this assignment in deployment flavours of NSDs
 • Arbitrator may modify NSD computed by Translator
 • Reassignment when vertical services are instantiated or terminated

• 5GT-SO scales vertical services within the limits of deployment flavours
 • Unaware of priorities
Arbitration (contd.)

- **Storage/memory**
 - Assign according priority

- **Processing/bandwidth**
 - Focus on **service latency**
 - Processing time in VNFs
 - Network travel time
 - Service latency depends on future placement by 5GT-SO

- **Extend NSD with deployment flavours for best and worst case**

- **At vertical service instantiation**
 - Default DF: worst case
 - Optional DF: best case

- **Best case deployment flavour**
 - VNFs deployed to **same server**, **zero network travel time**
 - Sufficient logical cores, such that processing time satisfies latency requirement

- **Worst case deployment flavour**
 - VNFs deployed to **different servers**, **non-zero network travel time**
 - Sufficient logical cores and bandwidth, such that processing plus network travel time satisfies latency requirement

15 April 2018
Summary and Outlook

• Different descriptions and main components of the 5GT-VS have been presented
 • Vertical service blueprints and descriptors, network service descriptors
 • Translator, Arbitrator

• PoC implementation about to start
 • Evaluate algorithms

• Complement catalogue of blueprints with possibility to compose vertical services from building blocks